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A covariant BRST approach of self-dualp-forms without
extrafields

C Bizdadea, ¸S Bălan and S O Saliu†
Department of Physics, University of Craiova, 13 A I Cuza Str., Craiova R-1100, Romania

Received 10 January 1997, in final form 14 April 1997

Abstract. Self-dualp-forms like first-order systems are investigated at classical, as well as at
path integral level. Converting the self-dual system into a second-order gauge theory without
introducing extrafields, we subsequently prove that: (i) the gauge theory, massive abelianp-
form gauge fields and self-dualp-forms describe the same dynamics on the stationary surface
of the field equations for the last model; (ii) self-dualp-forms and massive abelianp-form
gauge fields represent a first-, respectively second-order BRST gauge-fixed version of the gauge
system. The connection with the case of introducing extrafields is briefly addressed.

1. Introduction

Recently, the BRST formalism [1–5] has been successfully applied to second-class
constrained systems by converting the original theory into a first-class one in different
ways [6–9]. These conversion methods have been extended (with and without introducing
extrafields) to a special type of second-class theories, such as massive abelianp-form gauge
fields, which preserve in a certain fashion the reducibility relic of a gauge system [10, 11].
The importance of abelianp-form gauge fields is that they are profoundly connected
with string theory and various supergravity models [12–13]. At the same time, from the
mathematical point of view, on the one hand these objects allow us to understand zero modes
and define some topological invariants associated with vector bundles (called characteristic
classes) and, on the other hand, the differential forms are the only fields for which it is
possible to define a differential operator independent of metric choice. A special class of
models involving abelianp-form gauge fields is given by self-dual models. These models
are described by the Lagrangian action

SL
0 [Aµ1...µp ] =

∫
d2p+1x

(
−αεµ1...µ2p+1F

µ1...µp+1Aµp+2...µ2p+1 − M2

2 · p!
Aµ1...µpA

µ1...µp

)
=
∫

d2p+1x L0 (1)

with Fµ1...µp+1 = ∂ [µ1Aµ2...µp+1] , εµ1...µ2p+1—the completely antisymmetric symbol in(2p+1)
dimensions andα a constant. The corresponding field equations read

δL0

δAµ1...µp
≡ −M

2

p!
Aµ1...µp − 2αεν1...νp+1µ1...µpF

ν1...νp+1 = 0. (2)
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We denote the stationary surface of field equations, (2), by6. Initially we specialize to the
casep odd which is relevant by virtue of the subsequent analysis, the opposite situation
being briefly addressed at the end of the paper.

The canonical analysis of (1) outputs the primary constraints

Gi1...ip−1 ≡ π0i1...ip−1 = 0 (3)

Gi1...ip ≡ πi1...ip + α(p + 1)ε0i1...ipj1...jpA
j1...jp = 0 (4)

the canonical Hamiltonian

H =
∫

d2px

(
−2pA0i2...ip ∂i1πi1...ip +

M2

2 · p!
Aµ1...µpA

µ1...µp

)
(5)

and the secondary constraints

Ci2...ip ≡ 2p∂i1πi1...ip −
M2

(p − 1)!
A0i2...ip = 0. (6)

It is obvious that the previous constraints are all second class, so action (1) has no gauge
invariances. We mention that constraints (4) are a direct consequence of the first-order
piece in the original action, while (3) and (6) are not linked to this feature (such constraints
appear, for example, to massive abelianp-form gauge fields described by quadratic actions).

Starting from (1), we derive a gauge theory without introducing extrafields along the
following steps: (i) we construct a system having only the primary constraints of the
original one and the HamiltonianH fulfilling [H,Gi1...ip−1] = 0 strongly; (ii) starting from
the above system, we build a new one possessing only the primary constraints (3) and
the Hamiltonian,H ′ = H + ‘a series inGi1...ip ’, satisfying [H ′,Gi1...ip ] = 0 strongly; (iii)
with the last theory at hand, we arrive at the searched for gauge theory having the first-
class constraintsGi1...ip−1 = 0, γi1...ip−1 ≡ ∂ipGi1...ip = 0 and the first-class Hamiltonian
H ∗ = H ′ − p ∫ d2px A0i1...ip−1γi1...ip−1. A remarkable characteristic of the Lagrangian action
of the first-class theory resides in its Lorentz covariant quadratic form. Under these
considerations, we are able to summarize the main results of our paper. (a) We prove
that at the classical level (field equation level) self-dualp-forms, massive abelianp-form
gauge fields and the gauge theory mentioned at step (iii) are equivalent on6 (describe
the same dynamics on6). In this context, it is shown that the Lagrangian actions of the
gauge theory and massive abelianp-form gauge fields represent the second-order gauge,
respectively, second-order non-gauge versions of self-dualp-forms. (b) Next we quantize
the gauge theory in the antifield BRST formalism and establish, using some appropriate
gauge-fixing fermions, its relationship at the path integral level with the other two models
mentioned above. In this light, massive abelianp-form gauge fields and self-dualp-forms
represent a second-, respectively, first-order gauge-fixed version of the same gauge theory.
We remark that the path integrals of the massive and self-dual theories are not equivalent.
Thus, the results (a) and (b) offer a complete description of the correlation among the three
theories.

The paper is organized in six sections. Section 2 is devoted to the building up of a
Lorentz covariant second-order gauge theory associated to self-dualp-forms. In section 3,
we focus on the classical correlation among the original model, massive abelianp-form
gauge fields and the gauge theory derived in section 2. Section 4 investigates the path
integral link among the above three systems. In section 5 we briefly address the casep

even, while section 6 ends the paper with some concluding comments.
Related to the antifield BRST quantization, we follow the general lines from [5].
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2. The construction of the gauge theory

Here, we derive a gauge theory associated with system (1) by implementing steps (i)–
(iii) without extending the phase-space. There already exist attempts at building up gauge
theories without introducing extrafields [10], but their corresponding Lagrangian actions are
not Lorentz covariant. The following treatment solves this deficiency, restoring the manifest
relativistic covariance in an elegant fashion.

Initially, we intend to construct a Hamiltonian,H , with the property

[H,Gi1...ip−1] = 0 strongly (7)

starting with the canonical Hamiltonian of self-dualp-forms, (5). If we solve this problem,
the consistency of the primary constraints (3) vanishes identically and implies no secondary
ones. In this way, we eliminate the secondary constraints, (6), from the theory such that
the resulting system will possess only the primary constraints (3), (4) and the canonical
HamiltonianH . Applying theorem 1 from [9], we find after simple computation

H =
∫

d2px

(
−2p · p!

M2
(∂i1π

i1...ip )2+ M2

2 · p!
(Ai1...ip )

2

)
(8)

where(Ai1...ip )
2 = Ai1...ipAi1...ip and a similar notation for the first term. This completes the

implementation of (i).
Next we approach (ii), which reduces to the drop-out of the constraints (4). This is

realized by building up a HamiltonianH ′ fulfilling

[H ′,Gi1...ip ] = 0 strongly. (9)

First let us verify that (4) are no longer constraints for the theory described by the
Hamiltonian H ′ and the primary constraints (3). In this respect let us consider the
Hamiltonian action

SH0 =
∫

d2p+1x(Ȧµ1...µpπ
µ1...µp −H′ − ui1...ip−1Gi1...ip−1 − ui1...ipGi1...ip ) (10)

with H′ the density ofH ′ and the u’s Lagrange multipliers of the corresponding
constraints. The equations of motion stemming from (10) are inferred to beḞ =
[F,H ′]+ui1...ip−1[F,Gi1...ip−1]+ui1...ip [F,Gi1...ip ]. The consistency of (4) leads, by means of
(9), to the equationsε0i1...ipj1...jpu

j1...jp = 0, with the solutionuj1...jp = 0. Substituting back
the last solution in (10), we conclude that this action describes a theory having only the
primary constraints (3). Second, we identify the solution of (9). In this end, we represent
H ′ as a sum betweenH and a series inGi1...ip ’s

H ′ = H + µi1...ipGi1...ip + µi1...ipj1...jp
Gi1...ipG

j1...jp + · · · (11)

with unknownµ’s. Introducing (11) in (9), we deduce

H ′ =
∫

d2px

(
−2α2 · (p!)2 · (p + 1)!

M2
(F i1...ip+1)2+ a(Gi1...ip

)2
)

(12)

wherea = M2/8α2 · p! · ((p + 1)!)2 andG
i1...ip ≡ πi1...ip − α(p + 1)ε0i1...ipj1...jpAj1...jp . At

this moment, step (ii) is also accomplished.
Finally, we pass to step (iii). We are in the position to generate a gauge theory with

the primary constraints (3) provided their consistencies yield some secondary constraints

γi1...ip−1 = 0 (13)
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such that the entire set is first class. It is necessary to establish the concrete form ofγi1...ip−1

allowed by the first-class request. Once we succeed in determiningH ′ satisfying (9), it is
quite natural to exploit this result in order to render the computation easier and takeγi1...ip−1

to be functions ofGi1...ip . We try the simplest dependence, which is obviously linear

γi1...ip−1 = f j1...jp
i1...ip−1

Gj1...jp (14)

with unknown coefficients. The first-class character of (13) consequently implies

[γi1...ip−1, γj1...jp−1] = Mk1...kp−1

i1...ip−1j1...jp−1
γk1...kp−1 (15)

for some functionsM. With the help of (14), we can derive a suitable non-trivial solution
of (15), for some field-independent coefficients,f

j1...jp
i1...ip−1

. In this case, (15) is expressed by

[γi1...ip−1, γj1...jp−1] = −2α(p + 1)ε0k1...kpl1...lpf
k1...kp
i1...ip−1

f
l1...lp
j1...jp−1

. (16)

The right-hand side of (16) clearly cannot reproduce theγ ’s, but can be taken to vanish
choosing

f
i1...ip
j1...jp−1

≡ Zi1...ipj1...jp−1
= 1

(p − 1)!
δ

[i1
j1
. . . δ

ip−1

jp−1
∂ip ] (17)

so that (13) become abelian. Replacing (17) in (14), we determine the secondary constraints
of the gauge theory under the form

γi1...ip−1 ≡ ∂ipGi1...ip = 0. (18)

It is noteworthy that the above constraints are(p − 1)-order reducible. Now, since
[H ′,Gi1...ip−1] = 0, it is clear that the first-class Hamiltonian of the searched for gauge
theory can be taken asH ∗ = H ′ − p ∫ d2px A0i1...ip−1γi1...ip−1, so that [H ∗,Gi1...ip−1] =
−pγi1...ip−1 = 0. The constantp is chosen for future convenience. The consistency of the
last constraints induces no others because of (9) and the abelianity of theγ ’s. This solves
step (iii).

In conclusion the resulting gauge theory is pictured by the extended action

SE0 =
∫

d2p+1x (Ȧµ1...µpπ
µ1...µp −H∗ − ui1...ip−1Gi1...ip−1 − vi1...ip−1γi1...ip−1) (19)

which is invariant under the gauge transformations

δεA
0i1...ip−1 = εi1...ip−1

1 δεA
i1...ip = −∂ [i1ε

i2...ip ]
2 (20)

δεπ0i1...ip−1 = 0 δεπi1...ip = −αp (p + 1) ε0i1...ipj1...jp ∂
j1ε

j2...jp
2 (21)

δεu
i1...ip−1 = ε̇i1...ip−1

1 δεv
i1...ip−1 = ε̇i1...ip−1

2 + εi1...ip−1

1 + ∂ [ip−1 ε̃i1...ip−2] . (22)

The gauge parameters̃ε appear due to the(p − 1)-order reducibility of the secondary
constraints, thekth order reducibility functions beingZ

i1...ip−k
j1...jp−k−1

= (1/(p − k − 1)!)

δ
[i1
j1
. . . δ

ip−k−1

jp−k−1
∂ip−k ] . The Lagrangian action corresponding to (19) takes the form

S ′L0 [Aµ1...µp ] =
∫

d2p+1x

(
2α2 · (p!)2 · (p + 1)!

M2
(F

µ1...µp+1
)2

+αεµ1...µ2p+1F
µ1...µp+1Aµp+2...µ2p+1

)
=
∫

d2p+1x L′0 (23)

and is invariant under the(p − 1)-order reducible gauge transformationsδεAµ1...µp =
∂[µ1εµ2...µp ] . Formula (23) represents the cornerstone of this section. As underlined before,
the Lagrangian action of the gauge theory is manifestly covariant and truly second-order.
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This is implied by the elimination from the theory of the primary constraints (4). Indeed,
this elimination produces a HamiltonianH ′ quadratic in the momenta, and it is exactly
this quadratic character which induces the same feature at the level of the corresponding
Lagrangian action. It is clear that if (4) occurs, the HamiltonianH ∗ reduces toH which,
in turn, gives birth to a Lagrangian first-order theory.

3. The classical approach

In this section we investigate the classical correlation among self-dualp-forms, the gauge
theory built previously and the massive abelianp-form gauge fields at both Lagrangian and
Hamiltonian levels. As it will be seen massive abelianp-form gauge fields arise naturally
in our analysis.

At the Lagrangian level, self-dualp-forms are described by action (1), with the
corresponding stationary surface of field equations,6, expressed by (2). The Lagrangian
action of the gauge theory is given by (23), the resulting field equations having the form

δL′0
δAν1...νp

≡ 2αεµ1...µp+1ν1...νpF
µ1...µp+1 − 4α2 · p! · ((p + 1)!)2

M2
∂νFνν1...νp = 0. (24)

Then the relations between the functional derivatives implied in (2) and (24) read as

δL′0
δAµ1...µp

= 2α · (p + 1)!

M2
εµµ1...µpν1...νp ∂µ

δL0

δAν1...νp
. (25)

From (25) we can conclude that actions (1) and (23) describe the same dynamics on6

as any solution of (2) is also a solution of (24). However, it is not true that any solution
of (24) is a solution of (2), the class of solutions for (24) being larger than6. Indeed, if
Aµ1...µp ∈ 6, thenAµ1...µp + εµ1...µp + ∂[µ1εµ2...µp ] , with εµ1...µp some constants andεµ2...µp

arbitrary functions, verifies (24), but not (2).
Because (24) and (2) must be compatible on6, we can replace the first term from (24)

with the correspondent expression yielded by (2), obtaining the field equations

− M
2

p!
Aν1...νp −

4α2 · p! · ((p + 1)!)2

M2
∂νFνν1...νp = 0. (26)

These equations are nothing but the field equations of massive abelianp-form gauge fields
and can be stemmed from the Lagrangian action

S ′′L0 =
∫

d2p+1x

(
2α2 · (p!)2 · (p + 1)!

M2
(Fµ1...µp+1)

2− M2

2 · p!
(Aµ1...µp )

2

)
≡
∫

d2p+1x L′′0.

(27)

From (2) and (26), we find

δL′′0
δAµ1...µp

=
(

2α · (p + 1)!

M2
εµµ1...µpν1...νp ∂µ + gµ1ν1 . . . gµpνp

)
δL0

δAν1...νp
(28)

wheregµν denote the(2p + 1) spacetime metric. On behalf of (25) and (28), we conclude
that any function belonging to6 is simultaneously a solution of (2), (24) and (26), hence
self-dualp-forms, the gauge theory and massive abelianp-form gauge fields display the
same dynamics on the stationary surface, in other words they are equivalent on6.

Moreover, we can obtain the three previous actions from one another by substituting
alternatively Fµ1...µp+1 in terms of Aµ1...µp or conversely with the aid of (2). For
example, beginning with the Lagrangian action of self-dualp-forms, (1), and replacing
the fields Aµ1...µp from the first-order kinetic term with the expressions−(2α ·



6002 C Bizdadea et al

p!/M2)εν1...νp+1µ1...µpFν1...νp+1 resulting from (2), we derive precisely the Lagrangian action
of massive abelianp-form gauge fields, (27). Thus, we remark that massive abelianp-form
gauge fields represent the second-order non-gauge version of self-dualp-forms. The passing
from the massive theory to the gauge system, (23), is acheived in a similar fashion, inserting
a singleAµ1...µp from the mass-term of (27) as a function ofFν1...νp+1. The direct connection
between self-dualp-forms and the gauge theory can also be shown by simultaneously
performing the same operation in the kinetic and mass terms from (1). This means that the
gauge system may be interpreted like a second-order gauge version of both the self-dual
and massive theories. At the same time it is possible to follow the same lines as before,
but in reverse order, i.e. we start with (23), employ (27) and consequently reach (1). Using
the Lagrangian gauge conditions (2) we can conclude that the massive, as well as self-
dual theory, represents a second-, respectively, first-order gauge-fixed version of the gauge
system. Although equivalent on6, the three theories are not interchangeable because they
do not describe the same physical phenomena.

At this point we can state the consequences of the equivalence on6 among the three
previous theories. The gauge variation of both sides in (25) is equal to zero, while the
gauge variation of both sides in (28) is non-vanishing, being equal to the gauge variations
of actions (1) and (27). In fact these considerations emphasize the gauge invariance of (23)
and also the gauge non-invariance of (1) and (27). Inserting (25) in (28), we get

δL′′0
δAµ1...µp

= δL′0
δAµ1...µp

+ δL0

δAµ1...µp

. (29)

Relations (29) show that

S ′L0 [Aµ1...µp ] = S ′′L0 [Aµ1...µp ] − SL
0 [Aµ1...µp ]. (30)

Formula (30) is the basic consequence of the above mentioned equivalence on6 and
expresses the fact that−S ′′L0 plays the role of the Wess–Zumino action [14] for the self-dual
theory and conversely,−SL

0 plays the same role for the massive model. Indeed, the massive
and self-dual actions have the same gauge variations, which compensate through (30).

The link among these models within the classical Hamiltonian background is revealed
by the correct canonical gauge conditions needed to be imposed to the gauge system in
order to recover the massive or the self-dual theory. At the constraint level, the gauge
system and massive abelianp-form gauge fields differ by the secondary constraints (18),
respectively (6). Thus, the passing from the former to the latter theory is realized through the
canonical gauge conditionsvi1...ip−1 = 0 and (6), wherevi1...ip−1 are the Lagrange multipliers
appearing in (19). On the other hand, self-dualp-forms have the primary constraints (4)
in addition to those of massive abelianp-form gauge fields. Then, the passing from the
gauge system to the self-dual theory is accomplished by supplementing the prior canonical
gauge conditions with (4). The differences among the canonical gauge conditions in the
Hamiltonian, respectively, Lagrangian forms, appear as a result of the different (for each
of the second-class theories) use of (2). In terms of the canonical momenta of the gauge
theory, equations (2) are turned into

− M
2

p!
A0i1...ip−1 − 2αε0i1...ip−1j1...jp+1F

j1...jp+1 = 0 (31)

− Ai1...ip −
1

α · p! · (p + 1)!
ε0j1...jpi1...ipπ

j1...jp = 0 (32)

so the above equations describe6 in the Hamiltonian approach. All the three theories have
the (primary) constraints (3) in common. Exploiting (31) and (32) in an adequate manner,
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we reach the secondary constraints of massive and self-dual models. Indeed, by introducing
(32) in (31) we find exactly (6), arriving in this way at massive abelianp-form gauge fields.
The previous substitution is permissible because action (27) is quadratic and cannot produce
constraints of the type (32), which are proportional to (4). Reprising the same procedure
and using the constraints inferred by substituting (32) in (31), and also (32), we find the
constraints of self-dualp-forms. The above discussion provides evidence that the election of
(6), respectively (4) and (6), as canonical gauge conditions for the gauge system in order to
infer the massive, respectively, self-dual theory is legitimate. This shows that the canonical
correlation among the three models is based again on (the Hamiltonian correspondent of)
6. It is exactly the prior canonical gauge conditions that will be implemented during the
quantization process in order to emphasize the path integral connection among these systems.
The above analysis clearly shows that the self-dual model possesses fewer physical degrees
of freedom than the massive theory due to the greater number of second-class constraints
associated with the former.

In this way the complete link among the three models at both the Lagrangian and
Hamiltonian levels is elucidated, this connection constituting a basic result of this section and
actually of this work.

4. The path integral approach

In the sequel we envisage establishing that massive abelianp-form gauge fields and self-
dual p-forms are gauge-fixed versions of the gauge theory built earlier. To this end we
quantize the extended action (19) of the gauge theory in the antifield BRST framework.
The non-minimal solution of the master equation [5] reads as

SEnm = SE0 +
∫

d2p+1x

(
A∗0i2...ipη

i2...ip
1 − A∗i1...ip ∂ [i1η

i2...ip ]
2

−αp(p + 1)ε0i1...ipj1...jpπ
∗i1...ip ∂j1η

j2...jp
2 + u∗i2...ip η̇

i2...ip
1

+v∗i2...ip (η̇
i2...ip
2 + ηi2...ip1 + ∂ [ip η̃i2...ip−1])+ η∗i1...ipBi1...ip

+
p−2∑
k=0

η∗2i1...ip−k−1
Z
i1...ip−k−1

j1...jp−k−2
η
j1...jp−k−2

2 + η∗1i2...ipB
i2...ip
1 + η∗2i2...ipB

i2...ip
2

+
p−2∑
l=1

(l)

η̃∗i1...ip−l−2

(l)

B̃

i1...ip−l−2

+
p−3∑
k=0

p−k−2∑
l=1

(l)

η∗i1...ip−k−l−2

(l)

B

i1...ip−k−l−2
)
. (33)

In (33) theA∗’s, π∗’s, u∗’s, andv∗’s are the ghost number minus one and Grassmann parity
one antifields of the corresponding fields,(η

i2...ip
a )a=1,2 andη̃i2...ip−1 denote the minimal ghost

number one and Grassmann parity one ghosts associated with the gauge parameters from
(20)–(22), whileη

j1...jp−k−2

2 and η∗2j1...jp−k−2
account for the minimal ghosts of ghosts etc,

respectively, the associated antifields due to the(p − 1)-order reducibility. The remaining
fields stand for cohomologically trivial pairs.

Initially we make the link with the path integral of self-dualp-form gauge fields. The
gauge-fixing fermion imposing the canonical gauge conditions mentioned at the end of the
previous section is expressed by

9 =
∫

d2p+1x

(
ηi1...ipG

i1...ip − (p − 1)!

M2
η1i2...ipC

i2...ip + η̃i1...ip−2Z
i1...ip−2

j1...jp−3

(1)
η̃

j1...jp−3
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+
p−3∑
l=1

(l)

η̃ i1...ip−l−2
Z
i1...ip−l−2

j1...jp−l−3

(l+1)
η̃

j1...jp−l−3

+
p−3∑
k=0

η2i1...ip−k−2Z
i1...ip−k−2

j1...jp−k−3

(1)
η

j1...jp−k−3

+η2i2...ip v
i2...ip

+
p−4∑
k=0

p−k−3∑
l=1

(l)

η i1...ip−k−l−2
Z
i1...ip−k−l−2

j1...jp−k−l−3

(l+1)
η

j1...jp−k−l−3 )
. (34)

Eliminating in the usual manner the antifields from (33) with the help of (34) and integrating
in the corresponding path integral over all the fields but theAi1...ip ’s, we get

Z9 =
∫
DAi1...ip exp iS ′ (35)

with S ′ given by

S ′ =
∫

d2p+1x

(
− α(p + 1)ε0i1...ipj1...jp Ȧ

i1...ipAj1...jp − M2

2 · p!
(Ai1...ip )

2

+2α2 · (p!)2 · (p + 1)!

M2
(Fi1...ip+1)

2

)
. (36)

Formula (35) expresses the Hamiltonian path integral over independent variables for the
gauge theory associated with the original model and, in fact, it coincides with that of
self-dualp-forms, which therefore represent a first-order gauge-fixed version of the gauge
theory.

Now, let us see the link with the path integral with massive abelianp-form gauge fields.
We invoke the correlation between the momenta of gauge and massive systems

πi1...ip = 5i1...ip + α(p + 1)ε0i1...ipj1...jpA
j1...jp (37)

where5i1...ip obviously denote the massive theory momenta. As we also intend to use the
solution (33) of the master equation in order to establish the link between the gauge and
massive systems, we replace (37) in the prior solution and eliminate its topological character
(the coupling throughε0i1...ipj1...jp ). This can be attained by inserting (37) in (31) and (32)
and further substituting the resulting relations in (33). Thus the new solution stems from
(33) by performing the above changes and discarding the non-minimal termη∗i1...ipB

i1...ip

which is no longer necessary as it implements the gauge conditions (4) which are now
absent. Consequently the new gauge-fixing fermion will be found from (34) removing the
first term and rewriting the functionsCi2...ip with the aid of (37). Denoting this gauge-
fixing fermion byK, and integrating in the associated path integral over all fields excepting
(Ai1...ip ,5i1...ip ), we deduce

ZK =
∫
DAi1...ip D5i1...ip exp iS̃ (38)

with S̃ expressed by

S̃ =
∫

d2p+1x

(
Ȧi1...ip5i1...ip − a(5i1...ip )

2− M2

2 · p!
(Ai1...ip )

2

+2α2 · (p!)2 · (p + 1)!

M2
(Fi1...ip+1)

2+ p · p!

2M2
(∂ip5i1...ip )

2

)
. (39)

The last formulae state thatZK signifies the path integral over independent variables of
massive abelianp-form gauge fields [10]. In this manner we have succeeded in showing
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that the massive theory represents a gauge-fixed version of the gauge theory (23). Relations
(35)–(36) and (38)–(39) account for the main results of this section, and, actually, of the
present paper.

At this point it is important to notice that the massive and self-dual path integrals, given
by (35) and (38), are not equivalent. This is because the two theories do not have the
same number of propagating degrees of freedom at the level of original fields (i.e. physical
degrees of freedom). In fact the self-dual model possesses half the number of physical
degrees of freedom of the massive system. Under these considerations we observe that
the path integral of the self-dual theory is nothing butZK supplementary restricted to the
paths fulfilling (4) expressed in terms of5i1...ip . This is not a surprise as the difference
between the above gauge-fixing fermions,9 andK, implements exactly the canonical gauge
conditions (4). Indeed, restraining (38) to the above mentioned paths, we find

ZK |Gi1...ip=0 =
∫
DAi1...ip exp iS̃ ′ (40)

with S̃ ′ of the form

S̃ ′ =
∫

d2p+1x

(
− α′(p + 1)ε0i1...ipj1...jp Ȧ

i1...ipAj1...jp − M ′2

2 · p!
(Ai1...ip )

2

+2α′2 · (p!)2 · (p + 1)!

M ′2
(Fi1...ip+1)

2

)
(41)

which is nothing but (36) up to some insignificant modifications of the constants. In
conclusion, the gauge-fixing fermions9 andK induce different numbers of physical degrees
of freedom for the two gauge-fixed theories such that the corresponding path integrals are
not equivalent.

We have managed to show that the path integrals of massive and self-dual theories stand
for some gauge-fixed versions of the gauge system obtained with the aid of some canonical
gauge conditions describing the Hamiltonian representation of6. However, the massive and
self-dual path integrals are not equivalent as they go beyond models with different numbers
of physical degrees of freedom. More precisely, the self-dual path integral is inferred from
the massive one restricting the latter to the paths satisfying (4).

5. The casep even

We will briefly address the case ofp even. In this situation we can put the primary
constraints in a form similar to the casep odd, the secondary ones being given by
C ′i1...ip−1

≡ −(M2/(p − 1)!)A0i1...ip−1 = 0, C ′i1...ip ≡ πi1...ip − α(p + 1)ε0i1...ipj1...jpA
j1...jp = 0,

and the canonical Hamiltonian being expressed byH̃ = ∫ d2px(M2/2 · p!)(Aµ1...µp )
2. The

new constraints are second-class, too, the consequence of the first-order piece in the original
action being (4) andC ′i1...ip = 0. Each of these constraint sets are separately first class, so
one may regard one set as first-class, and the other as corresponding gauge conditions, in
contrast to the casep odd, where the constraints (4) did not allow this split. The guiding
line for obtaining some first-class constraints from (4) in the odd case was represented by the
relations [Gi1...ip , Gj1...jp ] = 2α(p + 1)ε0i1...ipj1...jp , so that [∂ipGi1...ip , ∂

jpGj1...jp ] = 0. In the
even case, the number of constraints due to the first-order character is double and, because
they are ‘covariantly’ separated, we can take∂ipC ′i1...ip = 0 or ∂ipGi1...ip = 0 as first-class
constraints for the gauge theory. The derivative feature of the last constraints is not a strict
necessity, as in the odd case, but it is merely suggested by this one. For this reason, the
even case is less relevant for our method than the odd one.H andH ′ can, respectively,
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be given byĤ = ∫ d2px (M2/2 · p!)(Ai1...ip )
2, Ĥ ′ = 0. We notice thatĤ ′ is the solution

of [Ĥ ′,Gi1...ip ] = 0 and [Ĥ ′, C ′i1...ip ] = 0. Imposing as secondary first-class constraints of

the gauge theoryγ ′i1...ip−1
≡ ∂ipC ′i1...ip = 0,H ∗ readsĤ ∗ = ∫ d2px (−pA0i1...ip−1γ ′i1...ip−1

+ g),
where g satisfies the equations [Gi1...ip−1, g] = 0, [γ ′i1...ip−1

, g] = 0, and thus ensures
the Lorentz covariance of the associated Lagrangian action. Finally, we find the same
Lagrangian action as in the odd case, namely (23). Therefore, the results already exposed
in section 3 are still valid. Further, the quantization approach follows a similar line to the
odd case, the canonical gauge conditions being supplemented withC ′i1...ip = 0 during the
switch from the gauge to the self-dual theory.

6. Comments

We have shown in a consistent fashion that self-dualp-forms, massive abelianp-form
gauge fields and the gauge theory (23) are equivalent at the classical level on the stationary
surface6, both second-class systems representing at the same time two non-equivalent
gauge-fixed versions of the gauge system. A remarkable feature is that although without
adding extrafields, the gauge theory is still Lorentz covariant. The unconstrained system
arising as an intermediate step in our procedure plays a crucial role in the process of building
up the gauge theory. On the one hand, this system ensures the second-order character of
the gauge theory and establishes the basis of its Lorentz covariance. On the other hand, the
functionsGi1...ip expressed by (4) are Hamiltonian constants of motion for this system, and,
moreover, are identified with the conserved charges of some currents incorporated within
the gauge theory field equations (24) through the relations

jµµ1...µp
= 2α · p! · (p + 1)

M2
εµµ1...µpν1...νp

δL0

δAν1...νp

. (42)

In this sense, the unconstrained system is paternal for the gauge theory. Although the field
equations (24) are invariant under the rigid transformationsAν1...νp → Aν1...νp+εν1...νp , action
(23) is not so, and consequently the above currents do not result from Noether’s Theorem
[15].

The usefulness of these currents is essentially twofold. First, equationsjµµ1...µp
= 0 span

6 and second, action (23) can be rewritten in terms of them under the form

S ′L0 [Aµ1...µp ] = SL
0 [Aµ1...µp ] + a

p + 1

∫
d2p+1x (jµ1...µp+1)

2. (43)

From (43) it is easy to see that the gauge theory reduces to the self-dual model ifjµµ1...µp
= 0.

In this way the second term in (43) has the significance of the Wess–Zumino action [14]
associated with (1).

The prior Wess–Zumino action helps us to make the connection with a different gauge
theory involving extrafields associated with the original one. The gauge variation of the
Wess–Zumino action is expressed byδε(a/p+ 1)(jµ1...µp+1)

2 = (M2/p!)∂[µ1εµ2...µp ]A
µ1...µp .

Introducing the extrafieldsHµ1...µp−1, with the gauge transformationsδεHµ1...µp−1 =
∂[µ1εµ2...µp−1] +Mεµ1...µp−1, we can substitute the above Wess–Zumino action with another
one such that their gauge variations are equal. In this light, we make the transformation

a

p + 1
(jµ1...µp+1)

2 = 1

p!
Fµ1...µp

(
MAµ1...µp −

1

2
Fµ1...µp

)
(44)
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whereFµ1...µp = ∂[µ1Hµ2...µp ] . Then, adding a gauge invariant term includingp-forms, the
Lagrangian action of the new gauge theory will be

S̃ ′′L0 =
∫

d2p+1x

(
− αεµ1...µ2p+1F

µ1...µp+1Aµp+2...µ2p+1

− 1

2 · p!
(MAµ1...µp − Fµ1...µp )

2+ b(Fµ1...µp+1)
2

)
(45)

with b a constant. The last gauge theory can be obtained by following a line mixing the
procedure exposed in section 2 with that from [10], the constraintsγi1...ip−1 = 0 being
replaced with−pγi1...ip−1 + Mpi1...ip−1 = 0, wherepi1...ip−1 are the canonical momenta
associated withHi1...ip−1 .

As a final observation we mention that our analysis forp = 1 incorporates the results
exposed in [16] investigating the equivalence between the self-dual vector model [17] and
the topologically massive spin-one model [18].
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